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SUMMARY

The governing equations for laminated beams are developed by variational
methods, The beams are considered to consist of n laminae and n-1
bond layers, where n can be any reasonable number greater than one.
The bond thicknesses are assumed to be small in comparison with those of the
laminae, The effects of shear strains and direct strains normal to the
bending axis in the bond layers are included. Two specific problems are
solved: bending under uniform load and buckling of simply supported
beams. Curves are presented which show the effect of bond flexibility.
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FOREWORD

The work reported herein constitutes a portion of a continuing effort
being undertaken at Stanford University for the U. S. Army Aviation
Materiel Laboratories under Contract DAAJ02-68-C-0035 (Task 1F162204A17002)
to establish accurate theoretical prediction capability for the static

and dynamic behavior of aircraft structural components utilizing both

conventional and unconventional materials.
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INTRODUCTION

The bending of multilayer sandwich plates was investigated by Liaw and
Little in Reference 1., In that paper the authors assume the facings to
carry only axial loads and inplane shear (no bending), whereas the cores
are assumed to carry only transverse shear stress., Stress resultants are
then formulated which reflect the contributions of the cores and the
facings subject to the above assumptions. Minimization of the total
complementary energy, in a procedure similar to that carried out by
Reissner2 in presenting a theory for the bending of nonhomogeneous
elastic plates, leads to the governing equations for a multilayer plate.
Since the multilayer effect is contained in the stress resultants, the
final equations for the stress resultants are the same as those for a

single sandwich plate except for the definition of the physical constants,

Inherent in the Liaw and Little analysis is the assumption of the same
shear angle for all core layers. The validity of this assumption was
investigated by Kao and Ross3; they considered a beam composed of three
facings and two core layers. By allowing the structure to have four
degrees of freedom, an inplane displacement function for each face and an
out-of-plane displacement function for the structure as a whole, the two
core layers are then capable of having different shear angles. Minimiza-
tion of the total potential energy with respect to each degree of

freedom leads to the generation of the governing equations for the system,

In both References 1 and 3, the core depths must be considered large in
comparison with the thickness of the facings. Although, in Reference 3,
the bending capability of the facings is included, the strain-displacement
relations for the core shears are not valid when the facings are thick
since they do not include the effect of rotation of the facings. Refer-
ence 1 provides no way of accurately estimating the significant bond
stresses, since the theory deals only with average effects across the
overall plate depth. From the analysis in Reference 3, an estimate of the
bond shear stress is possible; however, estimates of the peel strength of
the bonds are not possible since the peel strength depends on the direct
stress in the bond layer in the direction normal to the bending axis.



Also, in Reference 3, the theory and its application are limited to a

beam consisting of three laminae.

This report deals with laminated beams in which the bond layers are

small in comparison with the thickness of the laminae., By utilization

of variational techniques to establish the governing equations and
associated boundary conditions, the effect of the bond flexibility on the
buckling and bending of laminated beams is studied. The analysis is
performed for a beam consisting of n 1laminae and n-1 bond layers,
where n can be any reasonable number greater thdan one. From the results
of the bending analysis, the shear stresses and direct stresses normal to
the bending axis in the bond layers can be calculated. Such information

is of prime importance in the design of laminated beams.

The laminated beam is considered to have 2n degrees of freedom, an
inplane and an out-of-plane displacement function corresponding to each
lamina (see Figure 1). The total potential energy funotional is then
formulated in terms of these 2n displacement functions. Coupling of
the individual laminae is achieved by describing the strain energy of the
bond layers in terms of the displacement functions of the laminae they

connect.
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BASIC THEORY

STATEMENT OF PROBLEM AND BASIC ASSUMPTIONS

The problem considered herein is that of analytically formulating the

behavior of an n-ply laminated beam (see Figure 1) with nonrigid bond

layers,

and applying this formulation to the problem of bend-

ing of laminated beams under a uniformly distributed load and to the

problem of buckling of laminated beams under axial lcading.

The development is predicated on the following assumptions:

1.

For the individual laminae, all of the assumptions made in the

engineering theory of beams are assumed to apply.
The laminae all have the same elastic and geometric properties.

The bond layers all have the same elastic and geometric

properties.

The end condition for the structure as a whole is that of simple

support.

The individual laminae at the ends of the beam are not restrained

in any way from axial movement.

The bending stresses and axial stresses parallel to the bending

axis in the bonds are negligible.

The stress through the thickness of a bond layer is constant.

STRAIN-DISPIACEMENT RELATIONS FOR A BOND IAYER

As derived in Appendix I, the shear strain in a bond layer (see

Figure 2) is given in terms of the axial and lateral displacements of

the i

and i+l laminae as

u,-u dw dw
_%it%e 1 e (i i+1
7g = t gL e (dx LT ) L
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STRAIN-DISPLACEMENT RELATIONS FOR A LAMINA

In accordance with elementary beam theory, the axial strain in the ith
lanina 1is

dui dzwi
“Tw T2 @)
o

STBAIN ENERGY IN A LAMINATED BEAM

The strain energy stored in a laminated beam, with, flexibility effects
included, 1is

U=U, + U, + U, (3)

where U1 is the strain energy due to transverse shearing deformations
of the bond layers, U2

due to the bonding agent compressibility in the thickness direction,

is the average strain energy in the bond layers

and U3 is the strain energy associated with stretching and bending of

the laminae. The quantities U, and U, are derived in Appendix I.
Thus.

2 2t ff‘i Y1 T (::1 &2 d:i“ )]2 dx}

i=1

2
s TS i - e
0

4 %\
u w
. z mj‘ ) ox s Sof (524 ! o

o ‘dx

VARIATIONAL PRINCIPLE, GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
Bending Under Distributed Loading

For the bending problem (see Figure 3), the total potential energy

stored in the system is



2
b dw dw
et (1 Vi
L E ch[1“1+1' 2 (dx M )] "";
n-1 L
E.b
- B 2
+ Z.:ir Mipp = ¥ d*:
i=1 0
Ebe 4 AT
+ E f(a‘)d’fT"(r*‘)dx f""'1"" (3)
i=1

where Vp is the potential of the distributed load acting over the surface
of the i=1 laminae.

As developed in Appendix,II the extremes of U + Vp with respect to the
2n degrees of freedom u, and w, (1 =1,2,...,n) are the 2n Euler

{ i
equations
/)
d’wi Egb Egb
£ P (10417000 o (¥pop + 29y = Wy HBy) ()
E.b G.b(ctt) [du u
B B n n-1
+(61n) t (wn-wn-l)-(sin) 2t ldx T T dx
2
) oﬂld W d wn )]-(6 ) Ggb(c+t) [duz fﬁ
2 \d 2t dx dx
d v, dzv G_b(ctt) |du du
c+c/ 1 (15, -5 ) -B i+l Ti-1
t \d x il "in 2t dx dx

1- 1,2’...’n

(continued)
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d“u G.b dw, dw )
i B ctt 2 1
-Ebc 7 - (511) e | %Yy + 2 ( + ]

dx
P c+c(d“'1-1 ) d"’1+1)
1-17°% %41 T T2 ax dx

Gy
+(1-0,°0, ) v |u

G.b dw dw
B ct+t n n-1}] _
+(51n) t un-un-1+ 2 (dx + dx )]_ g
i=1,2,...,n (6)

The associated boundary conditions obtained from the variational pro-

cedure carried out in Appendix II are the 3n relations

1 L
d wi 4
EI —| =0 or —awl =0 i=1,2,...,n
o de dx i
0 0
a3 G.b(cHt) dar dy
bl AR )._B___u_u+_°ﬂ(_l+_l
- EI, —3 + () T3¢ 2%t 2 \ax T &
dx
. Ggb(ctt) ) . c,rt(dwﬁ1 . dw, N dwi_l)
+(1-8,978, ) e P11 T 2 Vax ax dx
I
Ggb(ctt) ) , okt (dwn+ dwn_l) o
& 6i.n 2t un l“n-l 2 dx dx
0
or L
dw,| =0 i=1,2,...,n
0
L
du1 -
Ebc —| =0 or Bu =0 g m L2 . a0 (7))
dx i
0 0



Buckling Under Axial loading

For the beam buckling problem (see Figure 4), the total potential energy

stored in the system is

n-1 L 2
G.b dw, dw
- B _ _ oft ( i 1+1)] '
Uk E 2t f [“1 U1 " 7 \ax ¥ Tax d"‘
n-1 L
E_b
B 2
+ E{zt [ [¥i417v ) d"i
i=1 0

c Dl e S

n

L dw 2
P 1 i
- Z{zf E(ax—) “"} 8
=1 0

where VP is the potential of tne axial load applied over the end sur-

faces of the beam laminae. The particular relation for V
in Appendix III.

P is presented

As developed in Appendix 111, the extreme of U + VP with respect to

the 2n degrees of freedom u, and v, (i=1,2,...n) are the 2n

Euler equations

4

d W, EBb E b
Blo & "0 Tem (Mgt By v 2By T ewy)

E o G b(ctt) [ du du

_B - R B n ___n-l
+(61n) t (wn wn-l) (Bin) 2t [dx dx
e 42 G.b(ctt) [du, d

P D W 5 6y B [ 2.
2 2 2 il 2t dx dx

dx dx
(continued)



d'w d"w G _b(ctt) | du du
+ ﬁ.(_l + __].-)]-(1-5 -5, ) R [_1'"_1 . szl

2 \ 2 gl 11 1 2t dx dx
2 £ 2 2
d‘w v d"w ] d"w
i
3 et S o (- Se b LR RN
dx dx dx /J dx
a2y Gpb )
) B ctt 2 _1)
Ebc . 2 (511) t [“2 w+s (dx T ]
X
R dw =
(-850 ¢ ['“1-1+ 2ug = vt (dx T Tax )]
G b dw =~ av
—B_ - ct+t n n-1 o =
+(511i) t [Ya a1t 72 (dx * ax )] 0 b EbEEE

(9)

The associated boundary conditions obtained from the variational procedure

carried out in Appendix III are the 3n relations

2 L L
7w, d
EIo 4_2 = or = Gwil =0 i=1,2,...,n
Y | 0
-d3w G,b(ctt) dw dw
Bl —2+ (5,,) 2= |u -u +i+£(—1+—2)
o , 3 il 2t 2 1 2 \dx dx
dx
G b(ctt) (dw , dw, dw )]
B ctt i+l o i-1
+(1-841°8,0) ~ 3¢ [“1+1 LTS e e
L
o GBb(eo-t) - . okt dwn . dwn-l ) _Piw_i .
in 2t n n-l 2 dx dx n dx
0
L
or v | =0 " i=1,2,...,n
0
(continued)
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du

Ech =0 or bui =0 {=1,2,...,0 (10)
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METHOD OF SOLUTION

For the two problems being investigated, the bending of a laminated beam
under lateral loading and the buckling of a simply supported laminated
beam under axial loading, the governing equations and boundary conditions

are prescribed in equations (6) and (7) and (?) and (10) respectively.

BENDING UNDER DISTRIBUTED LOADING

In the bending problem, the complexity of the equilibrium equations (6)
precludes straightforward integration and solution consistent with the

boundary conditions of simple support. Thus w, and u, are assumed

i i
as
" Jmx
wi aij sin L
1= 1,2;...,n
§ = 1,2,5.5.5% ' (11)
- I
ui dij cos 1
5 Rt I U Y S
j=12,...,» (12)

and used in conjunction with the total potential energy, equation (5), to
effect a Rayliegh-Ritz approximate solution. Both ug and vy have
been selected to satisfy the geometric boundary conditions for simple
support. As shown in Appendix IW, the application of the minimum total

potential energy principle leads to the equilibrium relations

EI 4 [EDbL G 2
ECoN (4T B B° [in(ett) ), o
2 (La) +[ 2e Tt 8L ](2 °11 51:3}“13
EbL Gb 2
B B [jn(ett) ]
V-2 T e (1-5,)08, 4 4

(continued)
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I R T1C Y A
t 4

117941 4

b
E!_ 4LJL__1§ (1- 5 )d

141 §

&, u_1}(5

. 2p
t (®

ij jn

) =0
i=1,2,...,n

j=1,2,...,=

[jn- 'GBb(ei-t)

] ijx G b(eH:)
) (8108 [_—_](5

51085

[ 3% Ggb(ctt) GgbL
T e (-8 )81 gt [ 2t ](1’511)"1-1 j
GybL
Ebc
+| L-D-+ @-85, - am)] 4
GybL
| ](1 8y My 4= O i=1,2,...,n

j = 1’2’.‘.,°

In matrix form, equations (13) and (14) become, respectiwely,

(A1) (8 + [A,]y (4 = (C)), 1= 1,2,...0

[A ]j (‘i j &+ [ ]j (di)j j = ]-,2,...,c

14

(13)

(14)

(15)

(16)

The matrices [Al] It [Az] 3y [A3] 3 and [A4] j are given in Appendix V.



Solution of equations (15) and (16) for (‘i) and (di) gives

(a), = [31]31 (), 1=1,2,...,n an

(4)y = -1} 1Ayl B (e, 3= L2,m (18)
where [BIJ.1 is given by
By1y = (Al - (A0 - A [A),  1=L2.m (19)

The application of equations (17), (18), and (19) to the laterally
loaded beam shown in Figure 4 leads to the results plotted in Figures 5,
6, and 7,

BUCKLING UNDER AXIAL LOADING

In the beam buckling problem, the equilibrium equations (9) and the
corresponding boundary condition equations (10) are all satisfied by

the displacement functions

o9

w, =8, sin T i=12,...,n (20)
u; = d, cos Lﬁ i=1,2,...,n (21)

Substitution of equations (20) and (21) into the equilibrium equations
(9) leads to two sets of n algebraie equations as shown in Appendix V.

In matrix form these equations are

|
o

(]
o

[4,] (2)) + [Ag] (&) (23)

The matrices [As], [A6], [A7], and [As] are given in Appendix V.,
Solving equation (23) for (di) and substituting into equation (22)

gives

[B,] (8,) = 0 (24)

15
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where
-1
[B,1 = [Ag] - [A J[AG] " [A,] (25)

For nontrivial solutions of (li) to exist, [BZJ must vanish. Thus

the eigenvalues of [Bz] give the b:ckling values.
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DISCUSSION OF RESULTS

The equations developed in this report for the bending and buckling of
laminated beams have been applied to two specific constructions, one a
two-ply and the other a six-ply section as shown in Figure 5. The curves
plotted in Figures 6, 7, and 8 and the data in the table on page 23 have
been derived from the bending solutions. The curves plotted in Figure 9

have been developed from the buckling solutions.

Figures 6 and 7 show the effects of variations of the bond elastic
properties on the beam deflections for the two-ply and six-ply beamse
respectively. The deflection values have been nondimensionalized with
respect to the deflection obtained when the bond layers are infinitely
rigid in shear and compression normal to the bending axis. As shown in
Figures 6 and 7, the beam deflections are significantly affected by both
the shear modulus and the extensional modulus of the bond layers. For
low values of the bond shear modulus, the laminae tend to deflect as
individual beams and, hence, the deflection increases. For low values
of the bond extensional modulus, the bond layers tend to compress,
causing additional lateral deflection of the beam, There appears to be
little quantitative interaction between these two effects, however, as

the curves in Figures 6 and 7 are essentially parallel,

The shear stress in the bond layers, shown in Figure 8, is found to
depend essentially on the shear modulus of the bond layers and to be
relatively unaffected by variations in the bond extensional modulus.
The shear stresses plotted in Figure 8 have been nondimensionalized
with respect to the shear stress of a beam with infinitely rigid bond
layers. This is, of course, the shear stress of elementary beam theory,
T = VQ/Ib. As shown in Figure 8, the actual bond shear stress does not
vary significantly from the shear stress of elementary beam theory for
reasonable values of the bond shear modulus. Furthermore, it is useful
to note that the elementary beam theory shear stress is conservative.

Hence, for design purposes, the elementary beam theory shear stress may

be used.
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The extensional stresses in the bond layers due to bending are given in

the table dbelow for the beams studied.

MAXIMUM DIRECT STRARSS 1B BRRAMS
*
Onax’C

EB/E

Two-Ply 8ix=-Ply
0.001 0.00525 0.00800
0.001 0.00645 0.00884
0.1 0.00741 0.00916
* ;, max bending stress in beam with rigid bonds

The extensional stresses in the bond layers are found to be relatively
unaffected by variations in the bond shear modulus. Also, as shown in
the table, the direct stress is not greatly affected by variations in the

extensional bond modulus.

The buckling loads of the laminated beams studied are found to depend
essentially on the bond shear modulus, with variations in the bond
extensional modulus having virtually no effect. The buckling loads
presented in Figure 9 have been nondimensionalized with respect to the
buckling load of a beam with rigid bond layera. As shown in FPigure 9,
the buckling loads are significantly affected by variations in the bond
shear modulus; in fact, for beams of low bomd shear modulus, the laminae
tend to buckle individually. It is of interest to note that although
only one deflected shape is assumed, as given by equations (26) and (21),
the buckling solution yields n eigenvalues. This is attributed to the
fact that within the restriction of the deflected shape implicit in (26)
and (21), the beam can still develop n-mode shapes. That is, separation
can occur at one interval bond layer with the result that the laminae

on each side of the separation move in opposite directions. Two possible
modes for a four-ply beam are shown in Figure 10. However, for reasonable
values of the extensional bond modulus (high peel strength), the eigen-

values corresponding to the mode shapes shown in Figure 10 are precluded.
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Figure 10. Two Possible Buckling Modes for a Four-Ply Laminated Beam.
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CONCLUDING REMARKS

The analysis presented herein is the first step toward development of a
general theory and solution procedure for laminated plates and shells.
The distinguishing feature of the theory is that the transverse shear and
extensional flexibilities of the bond layer between two laminae are
included. The extension of the present governing equations and boundary
conditions to plate and shell elements is straightforward with the
incorporation of the appropriate two-dimensional strain-displacement
relations in the variational principle. The quantitative results obtained
for the bending and buckling of two- and rix-ply beams reflect significant
effects of bond flexibility; also, they indicate that redistribution and
amplification of the bond stresses would occur under conditions wherein
the laminae are not permitted to move relative to one another at the beam
boundaries. This certainly is the case to be expected in practice.

Thus, further effort should be expended on the boundary problem as well
as on developing both qualitative and quantitative information for laminated
plaies and shells. In cgonclusion, it should be noted that two of the
basic assumptions on which the present analysis is based are that all of
the laminae and all of the bond layers possess the same elastic and
geometric properties., However, the analysis presented herein is easily
modified for beams with nonuniform bond layers and/or nonuniform laminae.
The nonzero elements in the matrices given in Appendixes IV and V can be
modified to accommodate property changes between the laminae and the bond

layers.
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APPENDIX I
STRAIN-DISPLACEMENT REIATIONS FOR BOND LAYERS AND STRAIN
ENERGY IN BOND IAYERS

The strain-displacement relationships for bond shear and extensional
strains normal to the bending axis are developed in this appendix. The
consideration of two adjacent laminae with their connecting bond layer
and the distortion of a typical cross-section a-a (as shown in Figure 2)
leads to the displacement of a point on the upper edge of the bond layer

due to bending given by

dw
i
= (26)

5, = u, - 3

i

T

At the lower edge of the bond,a point originally on section a-a is dis-

placed a distance
dw
c _ i+l
1+1 72 Tix 27

Thus, if it is assumed that the angle of distortion of the bond layer is

constant across the thickness, then this angle of distortion is

61-62 dwi dwt+1

- P S (G § __)
“= 3 ’t[“l Ui+l Z(dx T ] (28)

The angle @ 1includes two effects. One is the shear distortion of the

bond layer and the other is the slope of the bond layer due to bending.
Under the assumption that bending resistance of the bond layer is negli-
gible, this latter effect is, quaatitatively,

dw dw
Y il)
@ =3 (dx * (29)

Thus, the angle & can be written as

a= 7y, +Q =7 +%

dw dw
i i+1
1 B (dx it dx ) (30)

Use of equation (28) gives
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_ 1%

dwi-+1)
B t

1., e (%1
% T+ (K t (2

For thin bond layers the extensional strain normal to the bending axis can

be assumed constant. Thus, this strain component is

W, "W
= Al i
e (32)
The strain energy in the bond layers is then
n-1 L 2
U, = Z E f u,-u - c+tldwi+ dwi+1>] dx
B 2t 1 i+l 2 \dx dx
i=1 0
D [ )
50 [wi+1-wi] dx (33)
0
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APPENDIX II
GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
FOR BENDING UNDER DISTRIBUTED LOADING

For the bending problem shown in Figure 3, the potential of the applied

loads is

L
Vp = - f pbw1 dx (34)
0

The strain energy associated with bending and stretching of the laminae

is

(e [ d“i)z e . dz“’i ‘
= 2 5 L&) =3 J o2 ) 6
i=1 0 0 =
From equations (33), (34), and (35), the total potential functional is

- {Ebe 3 dun i s : d2"1 : |
U+V=Z—f—dx+—f—dx
P (2 dx 2 dx2 ‘

0 0

n-1 L 2
+ ‘E f u, -u - ot e + M1 d
| 2t 17441 2 \dx dx
i=1 0
Eb L 5 [ L
TS f["1+1""i] =i - f Prbrw,-dx (36)
0 0

The variation with respect to wi gives

Ldzwi dzbwi
5w(u+v)=31°f 7 ——t
i P dx dx
0
L
G.b dw dw )
= %> ot ) ort [Yi-1 1+1
(15,0, ) t _/ Y1Y1 t 2 (dx + l

0 (continued)
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Eb L

B f - -
: ( vi-l + 2w1 wH_l)bwidx
0

d
L= bvi dx +(1-bu-b )

in

dx

L
+(5. ) 5 : , St [u -u, + —“‘(dwl + dwz\] vy
{1/ 2 2t 2 1 2 \dx dx /| dx
0

Egh B
+(511) S f [wl- 2]5"1 dx
0

L
+(5, ) —GBb . S u-u o4 S dwn-l + dwn)] dx
in 2 2t n n-1 2 dx dx dx
0

Eb L L
B
+(51n) = f [wn-wn_l]ﬁwn dx -(511) [bp Bwl dx = 0
0 0

{=1,2,...,n

Integration by parts leads to the set of n coupled, differential

equations and 2n associated boundary conditions giver. by

dawi EBb EBb
o — - - - —— - - I — -’
20 b (1-8, -8y = (wyg 2wy vy By )) =y owy)
E_b G_b(ctt) | du du
_B~ ~ N _B n _ n-1
+(81n) t (wn "n-l) (sin) 2t [dx dx

2 2
+e+t/d"n+dwn-1 ® )Gﬁbiﬁ du, 9y
2\ 2 2 il 2t dx dx
dx dx
au.  d G.b(ctt) [du as
sortfc 2 TP B 1 M1
2 \ 2 dle il "in 2t dx dx
2 2 2
d w d W d w
+ﬂ —.i—-1+2 L_’. i+1 -(5 )p=0 i= 1’2’.lo’n
2 2 2 2 il
dx dx dx
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3
& Gyb(c+t) [u e (dwl dwz)

“EI, —3 + (By) Mt 7 & T J
dx
+(1-8, -8 )w e +ﬂm+zﬁ+&'_1]
il "in 2t i+l "i-1 2 dx dx dx

+ 8 ——GBb(e—ft) u -u + &t ﬁ + —dwn-l = 0
in 2t n n-1 2 dx dx
0

or L

6wil =0 i=1,2,...,n (39)
0
dzwi L y L
EI 3 = 0 or E;&wi = 0 1t=1,2,,..,n (40)
dx 0 0

bdui deu,
(3+V ) = Ebc f = -2«
i
0
dv
1-1 . 41
{28037, )_ f [ U gt eu ey ¥ [(T"’ & )] Seydx
G.b dw dw
Ss® o p W
0 ¢ / [1 U - (d dx)]5“1dx
L
G.b dv.  dw
SgP ) ere(n | Tpy .
+(6in) t f [un un-1+ 2 (dx + 3 )]5u St
0
i=1,2,...,n (41)

Integration by parts leads to the set of n coupled, differential

equations and the associated set of n boundary conditions given by
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2

-Ebc —d n -(8,,) 53 u,-u, + &L (duz + dw]‘)]
0l 117 ¢ (2717 T2 \dx T 4
X
e G_ b dw dw
: °g° ot i1 1+1)
+(1-54)780) ¢ [ Yt 2yt Yo Ta T T J
G_b dw dw
_B_ E c+t(Vn n-l)J =
+(61n) t [“n"“n-1 + 2 \dx + dx U
i=1,2,...,n (42)
dui L
Ebc = = 0 or Bui =0 i=1,2,...,n (43)
0 0
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APPENDIX II1
GOVERNING EQUATIONS AND BOUNDARY CONDITIONS FOR
BUCKLING UNDER AXIAL LCADING

For the buckling problem shown in Figure 4, the potential of the applied

loads is
n L Yy
dw
P 1(_1)
Zn /de dx (44)
i=1 0

With the use of equations (33) in Appendix I and equation (35) in
Appendix II, the total potential functional for buckling of laminated

beams under axial loading is then

n L 2 L 2 2
du El d'w
- Ebc __L) Z o 1) 4
U+ Vp Ezzc f(dx dx + = f(dz)d"
0 X

i=1 0

2
‘G % f Y . d"1+1) 4
Mie1 T T2 \ex dx X

L " n L 2
Eb ‘ dw
B 2 P 1( 1)
* 2e Vi1 - vy d"}' > | o f 2\ax d"{ €Y
0 i=1 0
The variation with respect to w; gives
L dzw1 dzéwi
& (WvV.) = EI —_ dx
v P o 2 2
i dx dx
0
L
G b dw
B.  cht ( i-1, 1+1)]
-5 -8 = B S -
(184 =%0) 2 t f Yie1 Va1 Y T2 ek ax
0

d
ol l==05 - -
. w, dx +(1-0 f ( w + 2w wi 1)E)widx

i i1
(continued)
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L
+(8 )En—b'-ﬂ [u-u +ﬂ(dll-+dﬁ) dawldx
117 2 2t 2 1 2 \dx dx dx
0
Egb L
+(511) v f [w, =W, 1w, dx
0
G.b L dw dw \] dow
+(5)-—B—'ﬂf u_-u +°+t/ Bl n) LU
in’ 2 2t n n-1 2 \ dx dx dx
0
Egb L
+(5in) T f [“’n"’n-1]5"n dx
0
: . dw,  dow,
-Ede.. dx dx=0 i=1’2’oao’n
0

(46)

Integration of equation (46) by parts leads to the set of n coupled,

differential equations and the 2n astociated boundary conditions given

by

EI
o

4

d v, EBb EBb
o8 U0 hyg) Ty By Wy ROy )
E b &

- n-1
dx dx

I(,
(S8

Y SICR

_b(ctt) [dun du
n-1 n 2‘t

B
O ey

+ Sl 2t |dx

2 2
c-}-t:/d v d wn-l)]_(s , GBb(cH:)[du2 ) d_ul.
2 \de i il dx dx

2 2

. it d v, . d Vi et GBb(c-H:) du:H_1 _ dui-l
2 2 2 11 “in 2t dx dx
dx dx
2 2 2 2
ort [ ¥i-1 d'w, dwv, pd vy
tTltr gt [t 0
dx dx dx i=i.2,...,n (47)



-0 ot %";wJ {e1,2,...,n (48)

3
d"w G b(ett) T dw dw
E-EI _i +(6 ) _L_- u.=u, + ;.ﬁ(_.l + _2.)]
o il | 2 1 2

dx3 2t

1-5. .-5 ) E_Bb(_—c.’.-t-l -u + ctt ﬁ&l + 2 di + ﬁ:_l
*A-5400%0) T2 Yt Y T2 \ax x * ax
G b(ctt)

, L
o5 ) B . R ort[¥n d'n-l)]- P .
©in? T2e “a"%n-1 7 T2 \ax ax n dx

+

or L

= () i = 1.2,...,“ ("9)

The variation of equation (45) with respect to u, gives

b

du ddu
- ~1 . 1,
8  (U+Vy) = Ebe f = e
L 0
L
G.b dw
5 -5, ) - B f ] . otef 1-1 , ¥
+(1-8,1°8,0) ¢ Uatutu g Yt T tax T e s
0
Gg - ore (1 ﬁz)l
WO Sl ) [ '—_(2 & &/
0
Ggd - e+c(d"n ""9-1)
+(81n) ’ Tf [un-un-1+ 2 Ix_"' dx b“ndx
0

) CIC T SR TPy . | (50)

Integration of equation (50) by parts gives the set of n coupled,
differential equations and n associated boundary conditions given by
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+(1-5,

+(61n) Tt

i
Ebc ax

-(5

1

i1

o)

in

Gb

B
t

G,b

).__

)

t

G_b

B
t

u -~-u
n

or

u,-u. + et dwz + dwl)]
2 2 \dx dx

e T e Wi
Yia1 TN T M T T2 Tax dx
. ert(%n o dwn-l) =
n-1 " 2 \dx dx
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APPENDIX IV
SOLUTION FOR BENDING OF A LAMINATED BEAM BY A
UNIFORMLY DISTRIBUTED LOAD

The boundary conditions for this problem, as given by equations (39),
(40), and (43) in Appendix II, all are satisfied by the complete displace-

ment functions

n )
v, = Z Z aij sin jLﬁ (53)
i=1 j§=1,3
n ©
u, = Z dij cos ‘ILE (54)
i=1 j=1,3

Substitution of expressions (53) and (54) into the total potential
functional, equation (36) in Appendix II, gives

|
ik
P —g——
=1
N o
[ns[e]
~.
M
———
i
o
[
e
w
[
=}
i)
—_—
~
[« %
]

MV =
D
i=1 0 j=1,3
L ©
EI 2
o _ Az imx
+ : f[z (L) aij sin L dx}
0 -J=1,3
n"l E L( @ ®
y ) _B_ Jmx Jmx
+ L{Zt f LZ a1 j sin L Z aij sin L] dx}
i=1 0 j=1,3 =13
n-1 G.b L, = ®
‘J_B Jmx Imx
+ Z 2t f Z TG s Z TR R
i=1 0 j=1,3 j=1,3
® ® 2
ctt i dmx | ot Ix Jmx
+ 2 E , ai+ljc°s L + 2 Z L aij cos L }dx
j=1,3 j=1,3
(continued)
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Z a“ sin lﬁﬂ] dx (55)
0 J=1,3

Evaluation of the integrals in equation (55) gives

1=1 j=1,3 i=1,3
Bk Eb o Eb < E_b
L " L 2
+ 3 {2_ 2 E t 2 215%413 t 2e ) 2 aijg
1=1 §=1,3 j=1,3 1=1,3
n-1 GB [ ] G.b -]
L2 8 L g2
+ E {E"‘ 2 2 t 2 2 dij}
{=1 =1 j=1,3
¥ [mgmu P b o [n(ett) 2 2
+2 2t TSI 2 8L 443
i=1 i=1,3 =13
:{:1 $° i Ly g 3 i In(ett) | 4
1 T Tt 2 %3%+13 T T 4 %1413 %43
t=1 j=1,3 j=1,3
'n-lipﬁa n(ctt G n(ctt
w7 E t E G %%y T e 2 4 814149
i=1 j=1,3 j=1,3
+ nz-l_(ii: n(ctt d +E§3a2 |jn$c+t)|2
t t 213%3 7 Tt 8L 84+13%1
i=1 j=1,3 y=1,3
by % ., (56)
y=1,3

Variation of equatton (56) with respect to .1j leads to

E_bL

EI 4 G,b 2
- o (i) B B~ [jn(ctt) ] =
sau(”*vp) ! 2 3 *[ 2t * Tt 8L J(z °11 61n)f %

(continued)
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2t t %13

E b
. {__L+__I.L:1(itll.} as,

t

E bL
B ctt
. __._+ u_c__u_}m T

{ 2 1—5-—-)=(1 8,,)d

1-19
O8° jn(crt)
(l-bin)di+1j 170 T e (®in = 8314y
21pb
jn 11) =0 i=1,2,,..,o 57

Equation (57) can be written as

[A51y (a)) ) + [Ag]y (@), = (Cp)

b
where
[ Zph)
kg kyy O 0 vee 0 0 It
kg % ko O . 0 0 0
o k Kk k 0 ... 0 oo
(451, 10 11 *10 , (cl)J (59)
i 0
0 0 .. 0 kjg Ky Kyl 69 :
0 0 0 0 ko Kq L 0 _
k, k, O 0 0 0
ky, O 0 0 0 0
0 -k, O ky, 0 . 0
[A6]j = : (60)
0 0 0 -k, 0k,
0 0 0 0 -k, kp,

k]



with

EI 4 EDbL G_b 2 )
k - _O_ -(-L’LL + B + B un(c"'t)l
9 2 3 2t t 8L
L
.- EBbL+E [|n[<>|-t}]2
10 2t t 8L
5 (61)
EI 4 EDL G_b 2
K. o= B B [in(ctt)]
11 2 L3 t t 4L
k = EB—b Lg_” ctt
12 t b4 )
Variation of equation (56) with respect to dij yields
j:rGBb(eH:)) JnGgb(ctt)
5dij(u+vp) bt (1-8,)) 8, 14+ 4t (®n=041) 344
jnGBb(c-H:)) GBbL
+ 1" Tue (LB P81y F (' 2e ) (184109514
J
2 GbL
Ebc (i) B _ -
+ [ 2 1 t2e @7 % ain)Jdij
GBbL
+ (' _2t 1 - 6in)di+1j = 0 1=12,...,n (62)
Equation (62) can be written as
[A7]_1 (ai)-1 + [ABJJ (di)j =0 (63)
where
-k12 -k12 0 0 0 0
k12 0 -kl2 0 0 0
0 k12 0 -kip 0 2 0
(A = |
0 0 0 k12 0 -kl2
0 0 0 0 k12 k12

40 (64)




[Ag]y =

and

13

14

-kla 0 0 .
kls -kla 0 .
k14 ks ki 0
) 0 0 -kla
. 0 0 0
k - .EEE (ﬂj)z + EBb_L T
13 2L 2t
. GybL s
14 2t
T = Ebc(]n}z + GBbL
15 2L 2t J

41
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APPENDIX V

SOLUTION FOR BUCKLING OF A LAMINATED BEAM UNDER
AXIAL LOADING

All of the governing equations and boundary conditions developed in
Appendix III (equations (47), (48), (49), (51) and (52)) are satisfied by
the displacement functions

v = .1nLE‘- 1=1,2,...,n (67)
u = c:l1 cos LE i=1,2,...,n (68)

Substitution of the functions (67) and (68) into the set of differential
equations (47) as given in Appendix III leads to

E b
ﬂzu s - (18 ) t (8, -8
G b(ctt) 2
S L __ L=z x . Lot
®n) PL ti%a 272 Bt ‘n-1)]
Gb(e+t) n2 ot ]
G b(ctt) 2 2
. B A S
-G T [ 10¢,mdp)- zz“ 1)]'LG"1 0
. i=1,2,...,n (69)
The set of equations (69) can be written in the matrix form
[Al] (.1) + [A2] (di) =0 (70)
» where
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kl k2 0 0 0 0
k2 k3 k2 0 . 0 0
0 k2 k3 k2 0 0
[All = |. (71)
0 0 0 k2 k3 kl
0 0 0 0 kz k1
-ka k& 0 0 - 0 0
-k4 ké 0 0 0
0 -kh 0 k& 0 0
[Az] - . (72)
0 3 0 0 -k& 0 k4
0 0 0 0 0 k4 -k“
and
4 Eb 2Gb(ctt): 2. )
1 La o 2t L t I‘2 n
2 G b((ﬂ-t)2 E_ b
k = n— B - B
2 4
2 L t 2t
(73)
A (N e AUl
3 L“ o t LZ 2t L2 n
. an(e+t)
4 L 2t J

Substitution of the displacement functions (67) and (68) into the set of
equations (51) in Appendix III yields
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2 G.b
i . B l4.- 1 ot
Ebc b1 (bu) d.-d, + L 2 (12 + 11)\

2 t 927
G.b
R B |. . B ot .
#1670, ) = 4 Y 2a, - dy t L7 B 841
G.b
B n c+t
+ 51:\ t dn B dn-l + L 2 (.n . an-l)l 0

{=1,2,...,n (74)

The set of equations (74) can be written in matrix form as

(A) (a) + (&) (8)) =0 (75)
wvhere
-ks -ks 0 0 0 Ly 0
ks 0 -ks 0 0 . 0
0 k5 0 -ks 0 0
[A3] - : (76)
0 0 0 k5 0 -ks
0 0 0 0 ks k5
k6 -k7 0 0 0 - 0
-k., ks -k7 0 0 3 0
0 -k7 k8 -k7 0 . 0
(A,) = an
0 . 0 0 -k7 k8 -k.,
0 : 0 0 0 -k7 k6
and

(A
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? ABsTRACY

The governing equat:ons for laminated beams are developed by variational methods.
The beams are (onsidered to consist of n laminae and n-1 bond lavers, where n
can be any reasonable number greater than one. The bond thicknesses are assumed
to be small in comparison with those of the laminae. The cffects of shear strains
and direct strains normal to the bending axis in the bond layers are included. Two
specific problems are solved: bending under uniform load and buckling of simply
supported beams. Curves are presented which show the effect of bond flexability.
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